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For some types of sphere packing with typical one- and two-dimensional

parameter regions, the sphere-packing density as a function of the free

parameters is discussed. In addition, some sphere-packing types with

extraordinary density properties are presented. Until now, it was generally

assumed that sphere packings with minimal density are also those of highest

inherent symmetry. An example to prove the opposite is given.

1. Introduction

Sphere packings may be used for the description and classi-

fication of crystal structures and they can help to recognize

interrelationships between structures belonging to different

types. Especially in physical and mineralogical papers, the

term ‘sphere packing’ is frequently applied in a restricted

sense, namely only for densest sphere packings or for sphere

packings with high coordination numbers, e.g. for a sphere

packing with coordination number 8 that corresponds to a

cubic body-centred lattice. In the present paper, the term

‘sphere packing’ will be used in the wider sense as introduced

first by Heesch & Laves (1933). A set of non-intersecting

spheres that are symmetrically equivalent with respect to a

space group is called a (homogeneous) sphere packing if a

chain of spheres with mutual contacts connects any two

spheres (cf. e.g. Fischer, 1991a).

Each sphere packing can uniquely be assigned to a graph, its

sphere-packing graph, as follows: (i) each centre of a sphere is

replaced by a vertex of the graph; (ii) two vertices of the graph

are connected by an edge if and only if the corresponding

spheres are in contact (cf. Fischer, 1971; Mittelpunktsfigur,

Heesch & Laves, 1933).

Two sphere packings belong to the same sphere-packing

type if the spheres of one sphere packing can be mapped onto

the spheres of the other one and vice versa under preservation

of all contact relationships between the spheres, i.e. if the

corresponding two sphere-packing graphs are isomorphic (cf.

e.g. Fischer, 1991a). This conventional, purely graph-theor-

etical, approach is sufficient for most purposes and also for the

present investigation. Very recently, however, some examples

have been described where graph theory does not differ-

entiate between sphere packings that are different from the

crystallographic point of view. Then, additional arguments

from knot or braid theory have to be taken into account (Koch

& Sowa, 2004; Fischer, 2004).

Sphere packings belonging to the same type may be

generated within different Wyckoff positions of the same

space group or of different space groups of the same type or

even of different types. Such Wyckoff positions are either

assigned to the same lattice complex or they are related by

some limiting-complex relationships (cf. Fischer & Koch,

2002b). As a consequence and in analogy to point configura-

tions, the inherent symmetry of a sphere packing may be

higher than the space group used for its generation. Moreover,

sphere packings of the same type may show different inherent

symmetries.

In most cases, a sphere packing with space-group symmetry

G may be deformed without losing symmetry or sphere

contacts. Then, the corresponding sphere-packing type occurs

in G with 1 � n � 5 degrees of freedom, i.e. the metrical and

coordinate parameters of an entire n-dimensional parameter

region give rise to sphere packings of that type. The highest

possible number of degrees of freedom may be calculated as

nmax = j � g and depends on the regarded crystal system. j is

the number of metrical and coordinate parameters that may

be varied in the regarded crystal system and g is the minimal

number of symmetry operations forming a set of generators of

a corresponding space group: j = 4, g = 2 and nmax = 2 for the

cubic system, j = 5, g = 2 and nmax = 3 for the hexagonal,

trigonal and tetragonal systems, j = 6, g = 2 and nmax = 4 for

the orthorhombic system, j = 7, g = 3 and nmax = 4 for the

monoclinic system, and j = 9, g = 4 and nmax = 5 for the triclinic

system.

The density � of a sphere packing is defined as the volume of

all spheres within one unit cell divided by the unit-cell volume.

For some years, a group of Hungarian mathematicians (cf.

e.g. Molnár et al., 2002) has tried to derive the densest sphere

packings that are compatible with the symmetry of selected

space groups. They use the term ‘optimal ball packings’. For

crystal-chemical applications, however, sphere packings with

low and high density may be equally useful (cf. e.g. O’Keeffe

& Hyde, 1996). In the case of a sphere-packing type with an

n-dimensional parameter region (n > 0), the respective sphere

packings with minimal density are of special interest because

the corresponding ‘maximal expanded’ anion arrangements

offer particularly large voids as cation locations. Such sphere

packings often show a higher inherent symmetry than the



other ones belonging to the same type. In that case, the

position of their sphere centres belongs to a limiting complex

of the lattice complex under consideration.

To our knowledge, systematic studies of the change of the

density within the parameter region of a sphere-packing type

have not been performed yet. Information is available only on

the sphere packings belonging to lattice complex R�33m 6c

(Zobetz, 1983).

The present study aims to investigate the sphere-packing

density as a function of the free parameters for some typical

one- and two-dimensional parameter regions. In addition,

some sphere-packing types with extraordinary density prop-

erties will be presented.

2. Typical behaviour of sphere-packing types

Some types of sphere packing refer exclusively to zero-

dimensional parameter regions. The corresponding sphere

packings cannot be deformed without losing sphere contacts –

apart from pure changes of the scale. In these cases only, the

sphere-packing density cannot vary. Frequently, such sphere

packings have high contact numbers, e.g. the cubic or the

hexagonal closest packing or the cubic sphere packing with

eight contacts per sphere that refers to the oxygen packing in

pyrochlore (cf. e.g. O’Keeffe & Hyde, 1996); but there are also

some cubic sphere-packing types with coordination number

four and some tetragonal and hexagonal types with coordi-

nation number five showing this property. For all other sphere-

packing types with n-dimensional parameter regions

(1 � n � 5), the density depends on the choice of the free

coordinate and metrical parameters.

2.1. Sphere-packing types with a minimum of density

For most types, a sphere packing with lowest density is

uniquely defined – apart from pure changes of the scale. It

refers to a certain point inside the respective parameter

region, which may be either symmetric or asymmetric with

respect to that point.

2.1.1. Symmetric parameter regions. A typical example is

the one-dimensional parameter range 1
3 < x < 2

3 in P3221

3a x0 2
3 of the trigonal sphere-packing type 6/4/h3 (cf. Sowa et

al., 2003). Fig. 1 displays the dependence of the sphere-

packing density � on the coordinate parameter x. Both ends of

the parameter region correspond to sphere packings of type

8/4/c1, i.e. to cubic body-centred lattices with � = 0.68017. The

midpoint at x = 1
2 is located on the twofold rotation axis at 1

2 0z

belonging to the Euclidean normalizer P6422 (a + b,�a, 1
2c)

of P3221 (cf. Koch et al., 2002). Accordingly, the point 1
2 0 2

3

belongs to a limiting complex of lattice complex P3221 3a x0 2
3,

namely to P6222 3c, where type 6/4/h3 occurs with highest

symmetry and no degree of freedom. The twofold rotation

around 1
2 0z maps the two halves of the parameter region of

6/4/h3 onto each other. As a consequence, any two sphere

packings with parameters x and 1
2�x are congruent, and the

sphere-packing density � = 0.51013 at x = 1
2 is necessarily an

extreme value. It is a minimum, as it is in the normal case.

Sphere-packing type 4/6/h1 occurs also in P3221 3a x0 2
3

(cf. Sowa et al., 2003), but with a two-dimensional parameter

range (cf. Fig. 2) that is bounded by four one-dimensional (red

lines) and four zero-dimensional parameter regions (red

circles) belonging to types of sphere packing with higher
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Figure 1
Sphere-packing density � as a function of the coordinate parameter x for
sphere-packing type 6/4/h3 in P3221 3a x 0 2

3.

Figure 2
Symmetric parameter region of sphere-packing type 4/6/h1 in
P3221 3a x 0 2

3. Full black lines are equidistant isopycnics. Blue circles
mark the positions of the sphere packings with minimal densities.

Table 1
The boundary of the parameter region of sphere-packing type 4/6/h1 in
P3221 3a x 0 2

3; the parameters refer to the corresponding sphere packings
with minimal densities �.

Type x c/a �

4/6/h1 0.5 1.06066 0.39270

8/4/c1 0.33333 0.61237 0.68017
6/4/c1 0.33333 1.22474 0.52360
12/3/c1 0.33333 2.44949 0.74048
10/3/h3 0.5 2.59808 0.69813
12/3/c1 0.66667 2.44949 0.74048
6/4/c1 0.66667 1.22474 0.52360
8/4/c1 0.66667 0.61237 0.68017
6/4/h3 0.5 0.53033 0.51013



contact numbers (cf. Table 1). The twofold rotation around 1
20z

maps the right half of the parameter range of 4/6/h1 onto its

left half and vice versa. As a consequence, the sphere-packing

types 12/3/c1, 8/4/c1 and 6/4/c1 occur twice, namely at the left

and at the right side of the boundary, whereas the parameter

ranges of 4/6/h1 itself and of 10/3/h3 and 6/4/h3 are symme-

trical. The black contour lines in Fig. 2 are isopycnics, i.e. lines

of constant sphere-packing density. They also show the

twofold symmetry. The blue circles inside the parameter field

of 4/6/h1 and at its boundary mark the positions of the sphere

packings with minimal densities. All sphere packings with x = 1
2

belong again to the limiting complex P6222 3c. Only one half

of the parameter range of type 4/6/h1 may belong to any

asymmetric unit of the Euclidean normalizer of P3221. The Si

atoms in �-quartz form a sphere packing of type 4/6/h1. The

parameters [cf. e.g. Glinnemann et al. (1992), xSi = 0.4698,

c/a = 1.1006] deviate only slightly from those for the minimum

of density in Fig. 2.

2.1.2. Asymmetric parameter regions. The one-dimensional

parameter regions of the hexagonal sphere-packing type

4/4/h5 in P63/mmc 12j xy 1
4 (Sowa & Koch, 2004) and in

P6322 12i xyz (Sowa & Koch, 2005a) do not show any

symmetry. The ends of the parameter region at y = 0 and at

y = 1
9 correspond to sphere packings of types 5/4/h5 with

� = 0.40307 and 6/3/h28 with � = 0.35828, respectively. The

minimal density � = 0.27768 for type 4/4/h5 is obtained at

y = 1
12. As the parameter region (Fig. 3) is asymmetric, all

sphere packings corresponding to the various values of y are

geometrically different. The special sphere packing with y = 1
12

stands out only by its density but not by its geometric or

symmetry properties. The sphere-packing type corresponding

to the Si arrangement in the �-ThSi2 structure is a well known

example demonstrating that minimal density and special

geometric properties do not necessarily coincide (cf. e.g. Koch,

1985). The Si configuration corresponds almost exactly to a

sphere packing of the tetragonal type 3/10/t4 with an one-

dimensional parameter region in I41/amd 8e 00z. The minimal

density � = 9
128� = 0.22089 occurs at z = 13

32 = 0.40625 and c/a =

2
p

2 = 2.82843. The geometrically most favourable Si con-

figuration, however, with three Si neighbours at the vertices of

an equilateral triangle requires the parameters z = 5
12 = 0.41667

and c/a = 2
p

3 = 3.46410. It gives rise to the slightly higher

density � = 2
27� = 0.23271.

The parameter region of sphere-packing type 3/6/h3 in

P6322 12i xyz (cf. Sowa & Koch, 2005a) represents an analo-

gous two-dimensional example (Fig. 4). It is bounded by five

one-dimensional (red lines) and five zero-dimensional par-

ameter ranges (red circles) (cf. Table 2). Again, the blue circles

indicate the parameters of the sphere packings with minimal

densities. The contour lines in Fig. 4 do not show any

symmetry and no congruent sphere packings referring to

different pairs (y, c/a) exist.

If the parameter region of a sphere-packing type is asym-

metric, it is always possible to define for the Euclidean

normalizer of the space group under consideration an asym-

metric unit that comprises the entire region.

Sphere-packing type 10/3/h2 exhibits an unusual one-

dimensional parameter field in the general position of P6122

(cf. Sowa & Koch, 2005a). The respective curve lies in the

x, x�1
3, z plane. For each parameter quadruplet (x, x�1

3, z, c/a)

that refers to a sphere packing of type 10/3/h2, there exists a
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Figure 3
Sphere-packing density � as a function of the coordinate parameter y for
sphere-packing type 4/4/h5 in P63/mmc 12j x y 1

4 or P6322 12i xyz.

Figure 4
Asymmetric parameter region of sphere-packing type 3/6/h3 in
P6322 12i xyz. Full black lines are equidistant isopycnics. The dashed
line refers to � = 0.225. Blue circles mark the positions of the sphere
packings with minimal densities.

Table 2
The boundary of the parameter region of sphere-packing type 3/6/h3 in
P6322 12i xyz; the parameters refer to the corresponding sphere packings
with minimal densities �.

Type x y z c/a �

3/6/h3 0.44096 0.10763 0.14714 0.60475 0.20537

5/4/h5 0.33333 0 0.25 0.66666 0.40307
4/4/h5 0.41667 0.08333 0.25 0.40825 0.27768
6/3/h28 0.44444 0.11111 0.25 0.22222 0.35828
5/4/h36 0.45274 0.11941 0.15653 0.21777 0.34405
7/3/h18 0.46667 0.13333 0 0.23094 0.38694
5/4/h21 0.48100 0.14767 0 0.35182 0.34503
7/3/h19 0.5 0.16667 0 0.47140 0.37024
5/3/h17 0.48468 0.15135 0.10120 0.86476 0.26274
10/3/h2 0.33333 0 0.13763 2.09751 0.66568
4/6/h2 0.33333 0 0.1875 0.94281 0.34009



second one (4
3�x, 1�x, z, c/a) that belongs to a packing of the

same type. The two packings have the same density � and the

same sequence of distances from a central sphere to all the

other spheres in the various coordination shells. The coordi-

nate relationships may be explained either by a twofold

rotation around an axis at 2
3

1
3 z or by a mirror reflection with

mirror plane at x+1,�x, z. Fig. 5 illustrates the sphere-packing

density � as a function of the coordinate parameter x. Both

ends of the parameter region correspond to sphere packings of

type 11/3/h1, the minimal density is obtained at the midpoint

at x = 2
3. Although Fig. 5 looks very similar to Fig. 1, neither

space group P6122 nor its Euclidean normalizer

NE(P6122) = P6222(a, b, 1
2c) contains a twofold rotation axis at

2
3

1
3 z or a mirror plane at x+1,�x, z. As a consequence, the

entire parameter region of type 10/3/h2 belongs to one

asymmetric unit of NE(P6122) and there is no symmetry

reason that requires the congruence of two sphere packings

with parameters x, x�1
3, z, c/a and 4

3�x, 1�x, z, c/a. A thorough

geometrical discussion shows that the sphere packings of such

a pair are indeed not congruent: for instance, they are not

homometric because the calculated reflection intensities for

two corresponding hypothetical crystal structures do not

agree. As lattice complex P6122 12c contains P63/mmc 4f as a

limiting complex at 2
3

1
3 z (cf. Engel et al., 1984), the sphere

packing with x = 2
3 shows an enhancement of its symmetry.

2.2. Sphere-packing types without a minimum of density

The smaller quantity of sphere-packing types does not

comprise packings with a minimal density.

The one-dimensional parameter region 0 < y < 0.06274 in

P6122 12c xyz of the hexagonal sphere-packing type 4/6/h14

(cf. Sowa & Koch, 2005a) is a typical example (Fig. 6). The

sphere-packing density � increases continuously from

� = 0.51013 at y = 0 (type 6/4/h3) to � = 0.53605 at y = 0.06274

(type 6/3/h38). As the curve �(y) has a horizontal tangent at

y = 0, the minimal value � = 0.51013 may only be approxi-

mated by a sphere packing of type 4/6/h14, but it cannot be

reached except if additional contacts between spheres give rise

to a sphere packing of type 6/4/h3.

A two-dimensional parameter range with analogous prop-

erties belongs to the tetragonal sphere-packing type 4/6/t4 in

P42/mbc 8h xy0 (cf. Fischer, 1991b, 2005). It is surrounded by

three one-dimensional (red lines) and three zero-dimensional
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Figure 5
Sphere-packing density � as a function of the coordinate parameter x for
sphere-packing type 10/3/h2 in P6122 12c xyz.

Figure 6
Sphere-packing density � as a function of the coordinate parameter y for
sphere-packing type 4/6/h14 in P6122 12c xyz.

Figure 7
Asymmetric parameter region of sphere-packing type 4/6/t4 in P42/mbc
8h xy0. Full black lines are isopycnics with distance 0.01. Blue circles
mark the positions of the sphere packings with minimal densities.

Table 3
The boundary of the parameter region of sphere-packing type 4/6/t4 in
P42/mbc 8h xy0; the parameters refer to the corresponding sphere
packings with minimal densities �.

Type x y c/a �

7/3/t8 0.18301 0.18301 0.96343 0.60304
6/4/c1 0.25 0.25 1 0.52360
7/3/t5 0.31699 0.18301 1.03528 0.56119
5/4/t15 0.29289 0.14645 1 0.54689
12/3/c1 0.25 0 0.70711 0.74048
5/5/t2 0.21062 0.14031 0.92035 0.59021



parameter regions (red circles), where the one-dimensional

region of 6/4/c1 is composed of two segments of straight lines

(cf. Fig. 7 and Table 3). The blue circles in Fig. 7 indicate the

sphere packings with minimal density. As Fig. 7 shows, the

central point of the set of isopycnal lines is located at the

boundary and refers to a sphere packing of type 6/4/c1. Again,

the minimal density � = 0.52360 can only be approximated for

a sphere packing of type 4/6/t4.

The one-dimensional parameter range of the cubic sphere-

packing type 5/3/c12 in I23 24f xyz (cf. Fischer, 1974, 2004)

shows a somewhat different but also typical behaviour (cf. Fig.

8). The density � increases continuously from � = 0.58006 at

y = 0.17678 (type 6/3/c16) to � = 0.64691 at y = 0.18600 (type

9/3/c3), but in contrast to type 4/6/h14 the curve �(y) has no

horizontal tangent.

An analogous two-dimensional parameter region with the

same symmetry belongs to the type of cubic sphere packing

3/12/c1 (cf. Fischer, 1974, 2004). Three one-dimensional (red

lines) and three zero-dimensional (red circles) parameter

ranges form its boundary (cf. Fig. 9 and Table 4). The common

central point of the isopycnal lines lies far beyond the

parameter range of 3/12/c1 and its boundary.

3. Atypical behaviour of sphere-packing types

In the following, some types of sphere packing with very

unusual density properties are discussed.

3.1. Double minimum

(A) Sphere packings of type 6/3/h19 may be generated in

only three trigonal lattice complexes. They occur with highest

symmetry and no degree of freedom in R�33c 18e x0 1
4 (cf. Sowa

et al., 2003). The corresponding density is � = 0.59542. Type

6/3/h19 has one degree of freedom in R3c 18b xyz (cf. Sowa &

Koch, 2004) and in R�33 18f xyz (cf. Sowa & Koch, 2005b).

Fig. 10 illustrates the density � as a function of the coor-

dinate parameter y in R3c 18b. The parameter region is

symmetric with respect to a twofold rotation around x00, a

symmetry operation of the Euclidean normalizer of R3c.

Accordingly, the sphere packing with y = 0 (x = 0.19098, c/a =

0.66158) corresponds to the limiting complex R�33c 18e of

R3c 18b and to the minimum of density � = 0.59542. Owing to

other limiting-complex relationships [I�443d 12a is a limiting

complex of R3c 18b, cf. Koch & Sowa (2005)], both ends of the

parameter region (x = 5
24, y = 1

24 and x = 3
24, y = � 1

24; c/a = 1
4

p
6)

refer to sphere packings of the cubic type 8/3/c1 with density

� = 0.64284. This behaviour is in full agreement with that

described in x2.1.1 for sphere packings with symmetrical

parameter regions.

In contrast to this, the sphere packings of type 6/3/h19 show

an anomalous behaviour in R�33 18f with respect to their

densities. Fig. 11 illustrates the change of the density as a

function of the y coordinate for �0.04762 < y < 0.04762. This

parameter region is symmetric as the Euclidian normalizer of
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Figure 8
Sphere-packing density � as a function of the coordinate parameter y for
sphere-packing type 5/3/c12 in I23 24f xyz.

Figure 9
Asymmetric parameter region of sphere-packing type 3/12/c1 in
I23 24f xyz. Full black lines are isopycnics.

Table 4
The boundary of the parameter region of sphere-packing type 3/12/c1 in
I23 24f xyz.

Type x y z �

6/3/c16 0.32322 0.17678 0.03033 0.58006
4/4/c9
6/3/c10 0.31699 0.18301 0 0.61623
5/4/c2
9/3/c3 0.30096 0.18600 0 0.64691
5/3/c12

Figure 10
Sphere-packing density � as a function of the coordinate parameter y for
sphere-packing type 6/3/h19 in R3c 18b xyz.



R�33 contains a twofold rotation around x0 1
4, and again the

sphere packing with y = 0 (x = 0.19098, z = 1
4, c/a = 0.66158)

corresponds to the limiting complex R�33c 18e of R�33 18f and has

the density � = 0.59542. Here, however, the parameter y = 0

gives rise to a local maximum of sphere-packing density and

not to a minimum, as in the normal case. As a consequence,

the minimal density for sphere-packing type 6/3/h19 is not

accompanied by an enhancement of the inherent symmetry

resulting from a limiting-complex relationship. Owing to the

twofold axis of the normalizer, the parameter region shows

two minima of density with � = 0.59132. The corresponding

parameters are x = 0.20389, y = 0.01672, z = 0.29829 and

x = 0.18716, y = �0.01672, z = 0.20171; c/a = 0.72071. Both

ends of the parameter region (x = 0.23810, y = 0.04762, z = 1
3

and x = 0.19048, y = �0.04762, z = 1
6; c/a = 0.92582) refer to

sphere packings of type 10/3/h1 with � = 0.63470.

Until now, it was generally assumed – though it could never

be proved – that those sphere packings of a certain type that

show minimal density are also those of highest inherent

symmetry (cf. e.g. O’Keeffe, 1991; Fischer & Koch, 2002a).

Type 6/3/h19 is the first, and may be the only, example to prove

the opposite. Within the cubic, hexagonal, trigonal, tetragonal

and triclinic crystal systems, no other such examples have been

found but, as a consequence, such a behaviour must be taken

into account for future assignments of sphere packings to

types.

(B) The double minimum for type 6/3/h19 in R�33 18f has

consequences for some other types of sphere packing: 4/3/h2,

4/5/h2 and 5/3/h21 share the one-dimensional parameter

region of 6/3/h19 as a common boundary of their two-

dimensional parameter ranges in R�33 18 f ; this applies also to

Acta Cryst. (2005). A61, 426–434 Koch, Sowa and Fischer � Density of homogeneous sphere packings 431

research papers

Figure 11
Sphere-packing density � as a function of the coordinate parameter y for
sphere-packing type 6/3/h19 in R�33 18f xyz.

Figure 12
(a) Symmetric parameter region of sphere-packing type 4/3/h2 in
R�33 18f xyz. Black lines are isopycnics. Blue circles mark the positions
of the sphere packings with minimal densities. The dashed blue line is the
isopycnic with � = 0.59132. It touches the red line corresponding to
6/3/h19 at two points, referring to the two density minima of 6/3/h19.
(b) Detail of (a).

Table 5
The boundary of the parameter region of sphere-packing type 4/3/h2 in
R�33 18f xyz; the parameters refer to the corresponding sphere packings
with minimal densities.

Type x y z c/a �

4/3/h2 0.21922 0 0.25 1.43317 0.41571

10/3/h1 0.19048 �0.04762 0.16667 0.92582 0.63470
6/3/h44 0.21328 �0.04340 0.22543 1.62773 0.46814
12/3/h1 0.33333 0 0.25 2.82843 0.74048
6/3/h44 0.25668 0.04340 0.27457 1.62773 0.46814
10/3/h1 0.23810 0.04762 0.33333 0.92582 0.63470
6/3/h19 0.20389 0.01672 0.29829 0.72071 0.59132

0.18716 �0.01672 0.20171 0.72071 0.59132



the three-dimensional parameter ranges of types 3/8/h1 and

h[4/3/h1]2 (cf. Sowa & Koch, 2005b).

As types 4/3/h2 and 4/5/h2 show a similar behaviour, only

4/3/h2 is discussed in the following: Fig. 12(a) represents the

parameter region of 4/3/h2 in R�33 18f. It is symmetrical with

respect to the twofold rotation around x0 1
4 belonging to the

Euclidean normalizer of R�33 (see above). The boundary is

formed by three zero-dimensional (red circles) and three one-

dimensional (red lines) parameter ranges, one of which

belongs to type 6/3/h19. The isopycnics in Fig. 12(a) indicate a

point on the twofold axis as belonging to the unique minimum

of density (cf. Table 5). The dashed blue contour line with

� = 0.59132 has a remarkable property: it touches the par-

ameter region of 6/3/h19 not just at one point, as usual, but at

two symmetrical points according to the two minima of density

of type 6/3/h19. Fig. 12(b) shows this behaviour on a larger

scale.

This property may be transferred to the three-dimensional

parameter region of type 3/8/h1 with its minimum of density

� = 0.17248 inside its parameter range at x = 1
3, y = 0.07360,

z = 1
6, c/a = 0.40693.

Sphere packings of type 5/3/h21 can be generated only in

the general position of R�33. Fig. 13 shows its asymmetric

parameter region that is bounded by three one-dimensional

ranges (red lines) and three zero-dimensional ranges (red

circles). The blue circles indicate the minimal densities for

types 7/3/h23, 7/3/h24 and 6/3/h19 (cf. Table 6). The central

point of the set of isopycnal lines clearly lies outside the

parameter range of 5/3/h21. In contrast to the parameter field

of 3/12/c1 (x2.2, Fig. 9), there exist two points with equal lowest

densities at the boundary line corresponding to 6/3/h19. The

sphere packings of type 5/3/h21 with similar parameters,

however, are geometrically different.

The three-dimensional parameter region of the type of

interpenetrating sphere packings h[4/3/h1]2 shows an analo-

gous behaviour. It also has two points with equal lowest

densities at its boundary line referring to 6/3/h19, but it

is symmetric with respect to the twofold rotation around

x0 1
4.
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Figure 13
Asymmetric parameter region of sphere-packing type 5/3/h21 in
R�33 18f xyz. The full black lines are isopycnics with a distance of 0.01,
the dashed black lines refer to � = 0.595, 0.5924 and 0.5920. Blue circles
mark the positions of the sphere packings with minimal densities.

Table 6
The boundary of the parameter region of sphere-packing type 5/3/h21 in
R�33 18f xyz; the parameters refer to the corresponding sphere packings
with minimal densities.

Type x y z c/a �

10/3/h1 0.23810 0.04762 0.33333 0.92582 0.63470
7/3/h24 0.20816 0.02319 0.30955 0.73360 0.59463
9/3/h2 0.18681 0.01099 0.25 0.51355 0.65911
7/3/h23 0.20519 0.01855 0.30844 0.72560 0.59198
10/3/h1 0.19048 �0.04762 0.16667 0.92582 0.63470
6/3/h19 0.20389 0.01672 0.29829 0.72071 0.59132

0.18716 �0.01672 0.20171 0.72071 0.59132

Figure 14
Asymmetric parameter region of sphere-packing type 5/3/t24 in I41/a
16f xyz. Full black lines are isopycnics with distance 0.02. The dashed
black lines refer to � = 0.57. The blue line and the blue circles mark the
positions of the sphere packings with minimal densities.

Table 7
The boundary of the parameter region of sphere-packing type 5/3/t24 in
I41/a 16f xyz; the parameters refer to the corresponding sphere packings
with minimal densities �.

Type x y z c/a �

12/3/c1 0.25 0.25 0.0625 4 0.74048
6/3/t44 0.25 0.10522 0.08072 2.37608 0.56286
12/3/c1 0.25 0 0.125 1.41421 0.74048
7/3/t31
8/3/t17 0.22059 0.13235 0.09375 1.94029 0.58803
6/3/t46 0.22786 0.14714 0.08072 2.37608 0.56286



3.2. Density valleys

The tetragonal sphere-packing type 5/3/t24 (cf. Fischer,

1993, 2005) occurs exclusively with symmetry I41/a 16f xyz. Its

minimal density � = 0.56286 refers not only to a certain point

in the inner of its two-dimensional parameter region but to an

entire line, namely to a segment of the circle (x2 + y2)a2 =

2z2c2 in the x, y plane with a2 = (16z2 + 4z � 1
4)c2 and constant

values z = 0.08072, c = 4.38006 and a = 1.84340 (referred to a

sphere diameter of 1). All other isopycnics are also such

circular segments but with different values of z, a and c. Fig. 14

displays the parameter range of type 5/3/t24. It is bounded by

three one-dimensional (red lines) and three zero-dimensional

(red circles) parameter regions (cf. also Table 7). The blue line

represents the bottom of the density valley with � = 0.56286.

Each sphere packing of type 5/3/t24 is built up from ideal

tetrahedra, the centres of which form a tetragonally distorted

diamond configuration. The tetrahedra are connected by

zigzag chains of spheres that run parallel to the a or b direction

(straight lines in a projection along c). Figs. 15(a), (b) show

two sphere packings with minimal density and with a relatively

small and large x parameter, respectively. In each sphere

packing, the tetrahedra occur in two orientations. The tetra-

hedra in the two sphere packings are rotated by slightly

different angles around their axes parallel to c. The angle

between the a or b direction and those edges of the tetrahedra

that are perpendicular to c changes with increasing x param-

eter, whereas the size of the unit cell, the size of the tetrahedra

or the form of the zigzag chains do not change. The tetrahedra

can be rotated over a range of 10.03� maintaining the minimal

density.

Starting from a point at the density valley (cf. Fig. 14), the

sphere-packing density increases with increasing as well as

with decreasing y parameter whereas the tetrahedra rotate in

different directions. Fig. 16 shows two sphere packings of type

5/3/t24 with � = 0.66. At x = y = 1
4 and c/a = 4, a cubic closest

sphere packing (type 12/3/c1) is formed. Some edges of the

tetrahedra (and of the octahedra) are running in the x, x

direction. At x = 1
4, y = 0 and c/a =

p
2, a second closest cubic

packing in a different orientation occurs. Here, some edges of

the tetrahedra (and octahedra) are parallel to a and to b.

Until now, only one similar case is known, namely the

tetragonal sphere-packing type 3/8/t6. It has a three-dimen-

sional parameter range in I�442d 16e xyz and is discussed in

some detail by Koch & Fischer (1995).
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Figure 16
Two sphere packings of type 5/3/t24 with equal density � = 0.66 and with
high or low y parameter: (a) x = 0.245, y = 0.21037, z = 0.06553,
c/a = 3.51766; (b) x = 0.245, y = 0.05498, z = 0.11045, c/a = 1.60755. The
dashed lines indicate the unit cell. The range 0 � z � 1 is shown.

Figure 15
Two sphere packings of type 5/3/t24 with minimal density and different
parameters: (a) x = 0.23, y = 0.14377, z = 0.08072, c/a = 2.37608; (b)
x = 0.245, y = 0.11638, z = 0.08072, c/a = 2.37608. The dashed lines
indicate the unit cell. The range 0 � z � 1 is shown.



4. Conclusions

Considering the sphere-packing types known so far, about

85% contain a packing with minimal density (cf. x2.1).

Presumably, this number will decrease when the sphere

packings with orthorhombic or monoclinic symmetry are

included.

As type 6/3/h19 shows, the minimal density is not necess-

arily tied to the highest inherent symmetry accessible within

the parameter region of a sphere-packing type. This must be

taken into account when the minimum of density is used to

assign sphere packings to types.

We would like to thank the Deutsche Forschungs-

gemeinschaft for the support of this work under KO 1139/1-1.
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